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Objectives
• Understand use of argumentation techniques and strategies in political speech and text.
• Develop automated tools for social scientists to analyze persuasive communication and political

rhetoric.
• Assess the potential for multi-task learning to improve performance across tasks by recovering text

representations in common semantic space.

Data
Propaganda (Da San Martino et al. 2019)

• News articles, binary sentence-level annotations
of 18 propaganda types

Internet Argument Corpus (Abbott et al. 2016)
• Discussion forum posts, real-valued annotations

of 8 argument characteristics
IBM-Rank-30k (Gretz et al. 2020)

• Crowd-sourced arguments, real-valued annota-
tions of argument quality

80%-10%-10% train-validate-test split

Task Training N Balance
Propaganda 61,909 63/37
Disagree/Agree 66,684 21/79
Emotion/Fact 76,403 41/59
Attacking/Respectful 65,998 66/34
Nasty/Nice 65,829 73/27
Personal/Audience 24,749 25/75
Defeater/Undercutter 24,357 38/62
Negotiate/Attack 26,604 44/56
Questioning/Asserting 29,791 66/34
Argument Quality 96,036 6/94

Table 1: Size and Class Balance of Training Data.

Network Architecture

Figure 1: Network Architecture. Base encoder is fine-tuned. Max-pooling layer combines 18 propa-
ganda labels into single binary annotation. Regularization: 0.01 weight decay rate and 40% dropout at
each stage of network. Trained with AdamW optimizer (Loshchilov and Hutter 2017).

Double-Weighted Loss
Given predicted labels ŷ and true labels y, the total loss L is:

L (ŷ|y) =
∑
k

νkL(ŷ|y,Dk), (1)

where Dk denotes the set of observations corresponding to task-type k, and νk ∼ 1
|Dk| are the task-type

weights. The loss for each task type k is:

L(ŷ|y,Dk) ∼
1

|Tk|
∑
j∈Dk

∑
t∈Tk

∑
c∈Ct

wc
t l(ŷj|yj = c), (2)

where l(.) is the binary cross-entropy loss function, Tk denotes the set of tasks within k, and Ct is the
corresponding set of classes. Class weights wc

t are proportional to the inverse of class enrichment.

Commonalities Across Tasks

Figure 2: t-SNE projections of Text Representations from Intermediate Layers. Minor evidence of clus-
tering suggests model is learning representations that reflect similar semantic and logical structures across
tasks, without completely discarding task-specific structure. Similar amounts of clustering across plots
shows common structure is preserved as network proceeds from shared to task-specific layers.

Performance Evaluation
Task Baseline Unigrams Single-Task Multi-Task
Propaganda 55.47 38.46 63.07 61.74
Disagree/Agree 47.29 7.49 71.15 71.38
Emotion/Fact 45.80 21.91 68.11 63.93
Attacking/Respectful 56.47 51.16 67.46 68.07
Nasty/Nice 59.35 61.03 66.90 73.69
Personal/Audience 39.90 9.23 63.25 65.69
Defeater/Undercutter 53.4 45.21 45.97 55.65
Negotiate/Attack 36.93 55.31 64.76 64.81
Questioning/Asserting 50.57 57.47 59.61 63.23
Argument Quality 76.54 0.76 80.93 79.17

Table 2: Weighted F1 Scores. Baseline metrics are produced by random guessing and unigram metrics
by a naı̈ve Bayes classifier. Single-task and multi-task models use small BERT as base encoder.

Shared Trunk Multi-Task Multi-Task Multi-Task
Metric Baseline Unigrams Single-Task (Encoder) (17,024) (272,384) (438,784)
Precision 62.26 33.65 68.85 64.73 69.37 69.11 68.77
Recall 52.43 44.55 64.14 55.57 65.76 63.12 65.78
F1 52.17 34.80 65.12 56.70 66.73 64.46 66.33

Table 3: Comparison of Model Sizes. Baseline metrics are produced by random guessing and unigram
metrics by a naı̈ve Bayes classifier. Number of trainable parameters in parentheses, not including base
encoder. Single-task and multi-task models use small BERT as base encoder. Metrics class-weighted and
averaged across tasks.

Absolute Relative
Task Citation Metric Previous New Gain Gain
Propaganda Da San Martino et al. (2019) F1 60.98 61.74 0.76 1.25
Disagree/Agree Wang and Cardie (2014) F1 63.57 71.38 7.81 12.29
Disagree/Agree Abbott et al. (2011) Acc. 68.20 70.73 2.53 3.71
Emotion/Fact Oraby et al. (2015) F1 46.20 63.93 17.73 38.38
Nasty/Nice Lukin and Walker (2013) F1 69.00 73.69 4.69 6.80

Table 4: Comparison to Previous State-of-the-Art Metrics.

Computational Efficiency

Figure 3: Computational Efficiency of Deep Learning Models. All models run on one NVIDIA A100
GPU for one epoch. Multi-task model sizes given in Table 3.

Application: r/ChangeMyView
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Figure 4: Effect of Select Argumentation Characteristics on Opinion Change in r/ChangeMyView.
Red horizontal lines denote baseline probability of a comment resulting in opinion change. Error bars
give 95% confidence intervals. All models are binomial logits fit with penalized maximum-likelihood
(Firth 1993).

Highlights
• Argument mining tasks—and likely other natural language tasks in the social sciences—share com-

mon semantic and logical structure.
• Double-branched multi-task networks with double-weighted loss exploit shared features to

drive performance across tasks.
• A multi-task approach provides improvement on previous state-of-the-art metrics of 1.25% to

38.38%.
• Multi-task networks enable significant gains in computational efficiency without sacrificing per-

formance.
• Network outputs correlate with opinion change in theoretically expected ways.


