Multi-Task Learning Improves Deep Argument Mining Performance

Amirhossein Farzam,¹ Isaac D. Mehlhaff,² Marco Morucci,³ and Shashank Shekhar⁴ ¹ Department of Computer Science, Duke University; ² Department of Political Science, UNC-Chapel Hill; ³ Center for Data Science, NYU; ⁴ Department of Computer Science, NYU

Objectives

- Understand use of argumentation techniques and strategies in political speech and text.
- **Develop** automated tools for social scientists to analyze persuasive communication and political rhetoric.
- Assess the potential for multi-task learning to improve performance across tasks by recovering text representations in common semantic space.

Data

Propaganda (Da San Martino et al. 2019)

• News articles, binary sentence-level annotations of 18 propaganda types

Internet Argument Corpus (Abbott et al. 2016)

• Discussion forum posts, real-valued annotations of 8 argument characteristics

IBM-Rank-30k (Gretz et al. 2020)

- Crowd-sourced arguments, real-valued annotations of argument quality
- 80%-10%-10% train-validate-test split

Task	Trainin
Propaganda	61,90
Disagree/Agree	66,68
Emotion/Fact	76,40
Attacking/Respectful	65,99
Nasty/Nice	65,82
Personal/Audience	24,74
Defeater/Undercutter	24,35
Negotiate/Attack	26,60
Questioning/Asserting	29,79
Argument Quality	96,03

Table 1: Size and Class Balance of Training Data.

Network Architecture

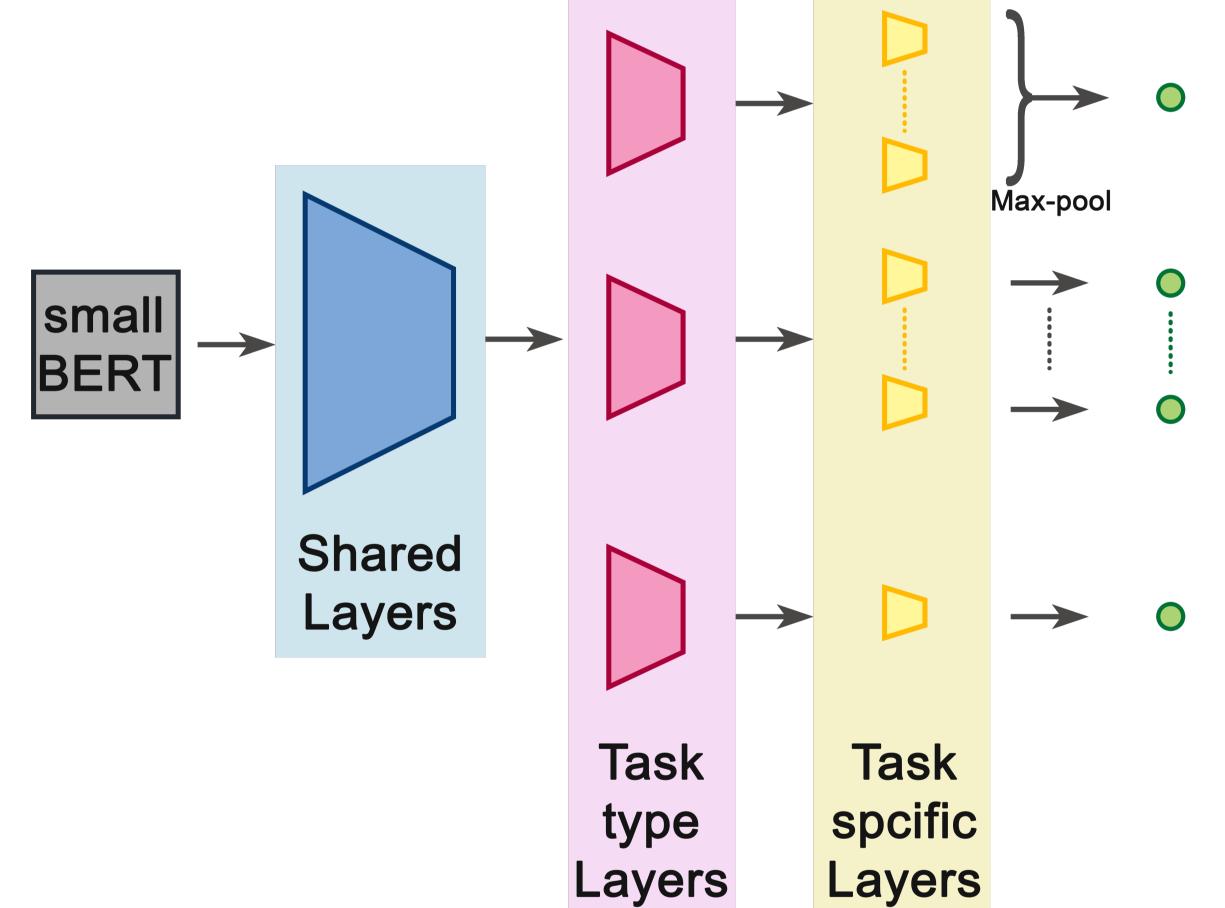


Figure 1: Network Architecture. Base encoder is fine-tuned. Max-pooling layer combines 18 propaganda labels into single binary annotation. Regularization: 0.01 weight decay rate and 40% dropout at each stage of network. Trained with AdamW optimizer (Loshchilov and Hutter 2017).

Double-Weighted Loss

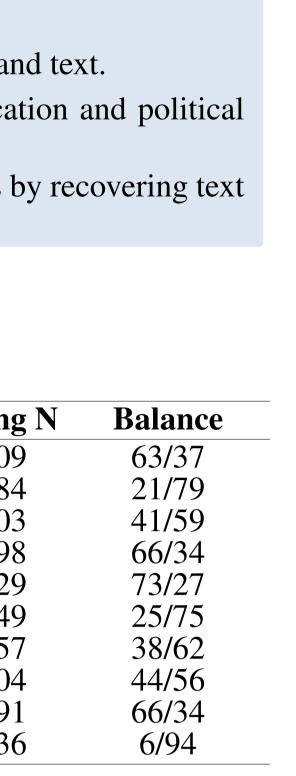
Given predicted labels \hat{y} and true labels y, the total loss \mathcal{L} is:

$$\mathcal{L}(\hat{y}|y) = \sum_{k}
u_k \mathcal{L}(\hat{y}|y, \mathcal{D}_k),$$

where D_k denotes the set of observations corresponding to task-type k, and $\nu_k \sim \frac{1}{|D_k|}$ are the task-type weights. The loss for each task type k is:

$$\mathcal{L}(\hat{y}|y, \mathcal{D}_k) \sim \frac{1}{|T_k|} \sum_{j \in D_k} \sum_{t \in T_k} \sum_{c \in \mathcal{C}_t} w_t^c \, l(\hat{y}_j|y_j = c),$$

where l(.) is the binary cross-entropy loss function, T_k denotes the set of tasks within k, and C_t is the corresponding set of classes. Class weights w_t^c are proportional to the inverse of class enrichment.



(2)

Commonalities Across Tasks

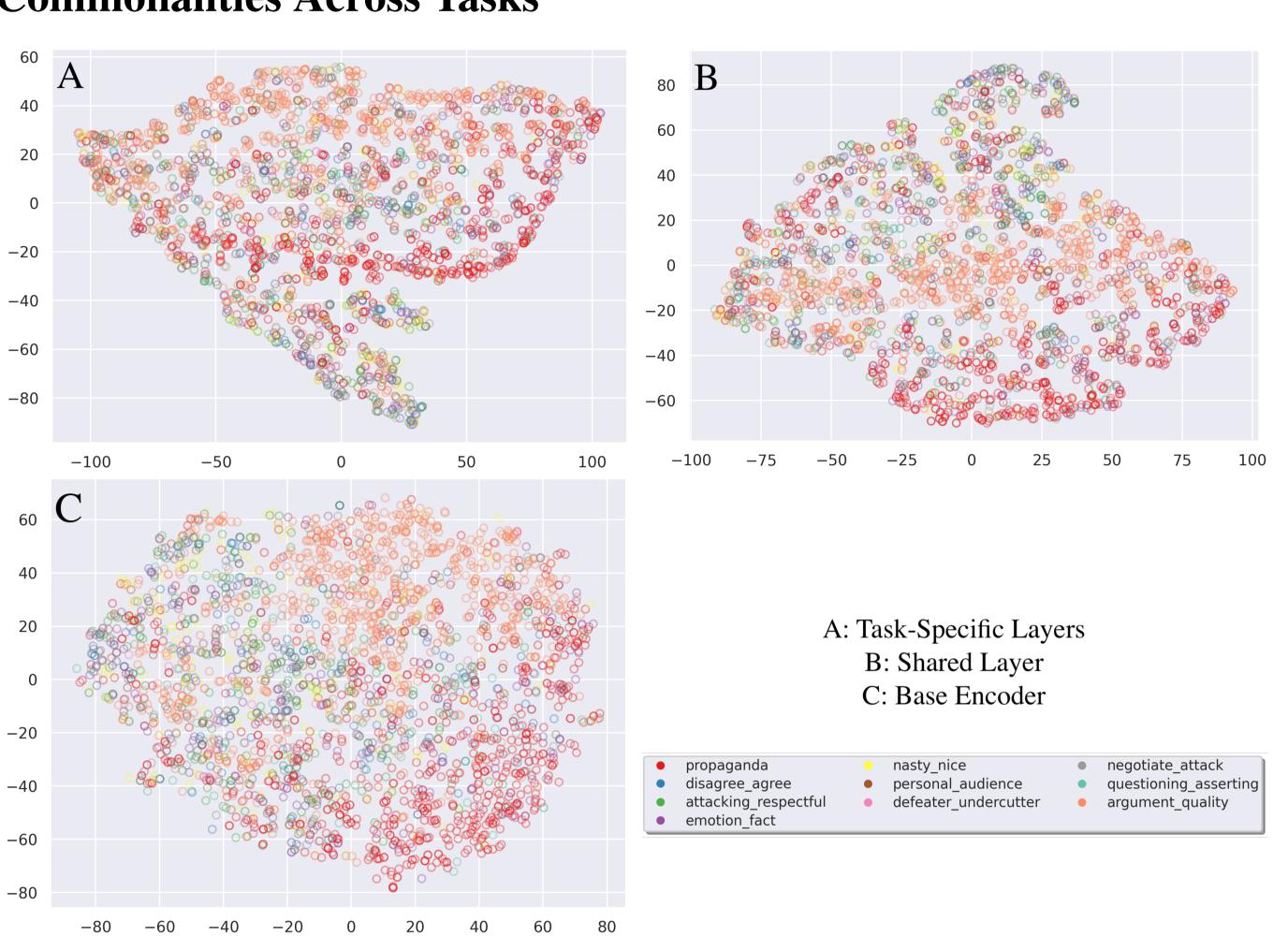


Figure 2: t-SNE projections of Text Representations from Intermediate Layers. Minor evidence of clustering suggests model is learning representations that reflect similar semantic and logical structures across tasks, without completely discarding task-specific structure. Similar amounts of clustering across plots shows common structure is preserved as network proceeds from shared to task-specific layers.

Performance Evaluation

Task	Baseline	Unigrams	Single-Task	Multi-Task
Propaganda	55.47	38.46	63.07	61.74
Disagree/Agree	47.29	7.49	71.15	71.38
Emotion/Fact	45.80	21.91	68.11	63.93
Attacking/Respectful	56.47	51.16	67.46	68.07
Nasty/Nice	59.35	61.03	66.90	73.69
Personal/Audience	39.90	9.23	63.25	65.69
Defeater/Undercutter	53.4	45.21	45.97	55.65
Negotiate/Attack	36.93	55.31	64.76	64.81
Questioning/Asserting	50.57	57.47	59.61	63.23
Argument Quality	76.54	0.76	80.93	79.17

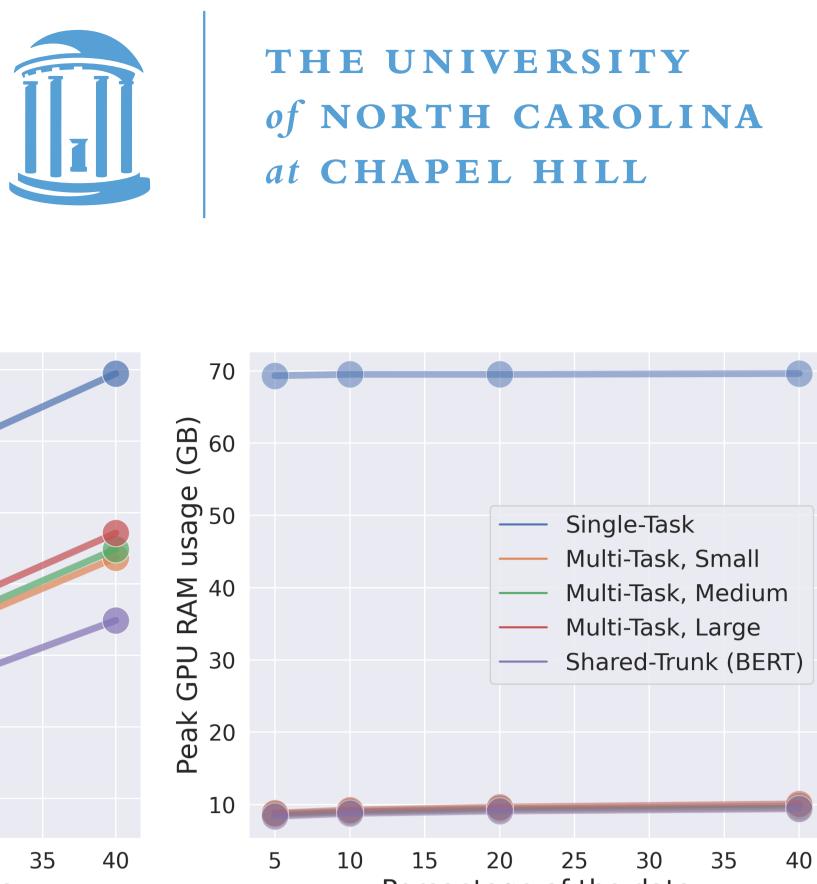
Table 2: Weighted F1 Scores. Baseline metrics are produced by random guessing and unigram metrics by a naïve Bayes classifier. Single-task and multi-task models use small BERT as base encoder.

	Decellere	T		Shared Trunk			
Metric	Baseline	Unigrams	Single-Task	(Encoder)	(17,024)	(272,384)	(438,784)
Precision	62.26	33.65	68.85	64.73	69.37	69.11	68.77
Recall	52.43	44.55	64.14	55.57	65.76	63.12	65.78
F1	52.17	34.80	65.12	56.70	66.73	64.46	66.33

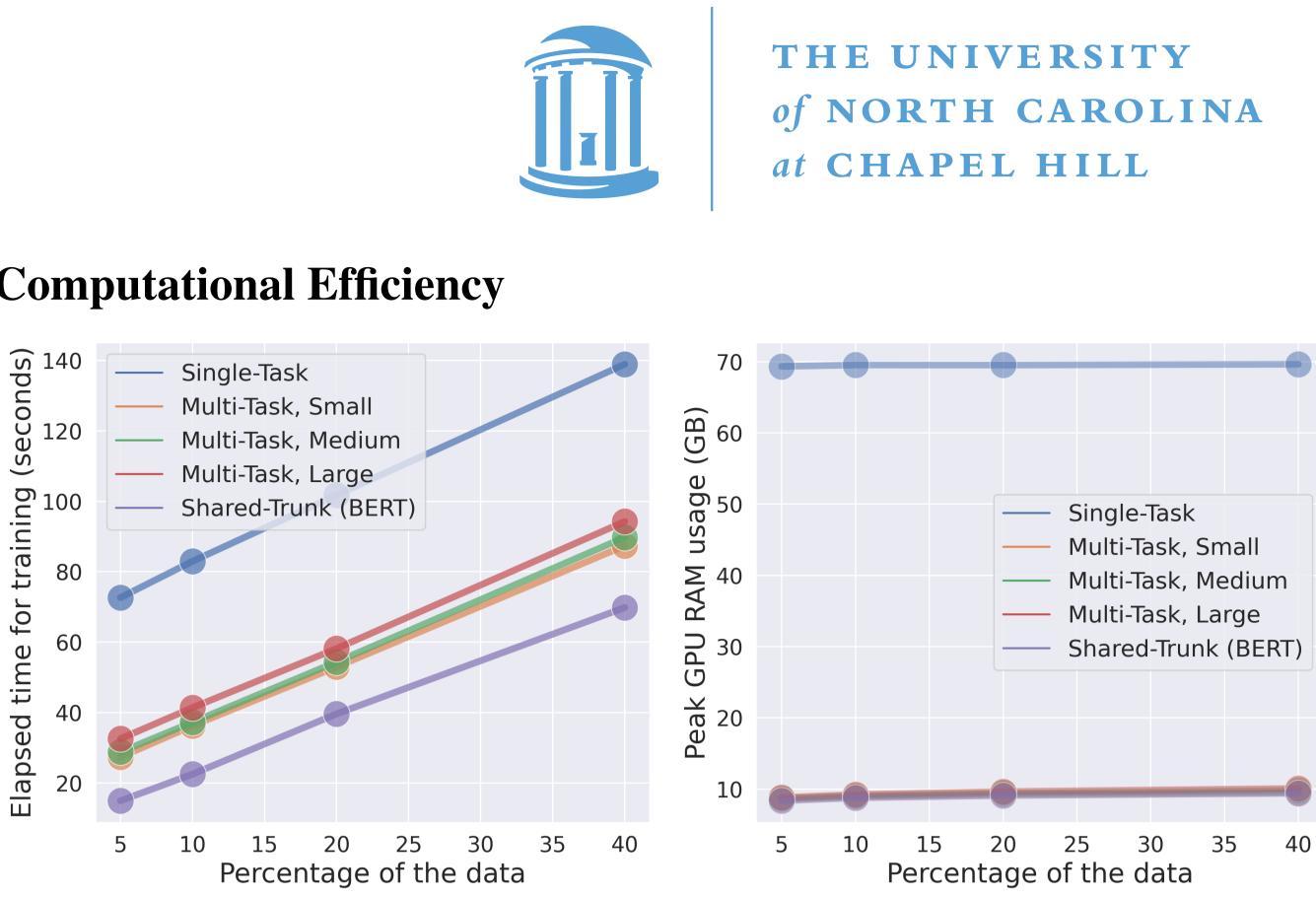
Table 3: Comparison of Model Sizes. Baseline metrics are produced by random guessing and unigram metrics by a naïve Bayes classifier. Number of trainable parameters in parentheses, not including base encoder. Single-task and multi-task models use small BERT as base encoder. Metrics class-weighted and averaged across tasks.

Task	Citation	Metric	Previous	New	Absolute Gain	Relative Gain
Propaganda	Da San Martino et al. (2019)	F1	60.98	61.74	0.76	1.25
Disagree/Agree		F1	63.57	71.38	7.81	12.29
Disagree/Agree		Acc.	68.20	70.73	2.53	3.71
Emotion/Fact	Oraby et al. (2015)	F1	46.20	63.93	17.73	38.38
Nasty/Nice	Lukin and Walker (2013)	F1	69.00	73.69	4.69	6.80

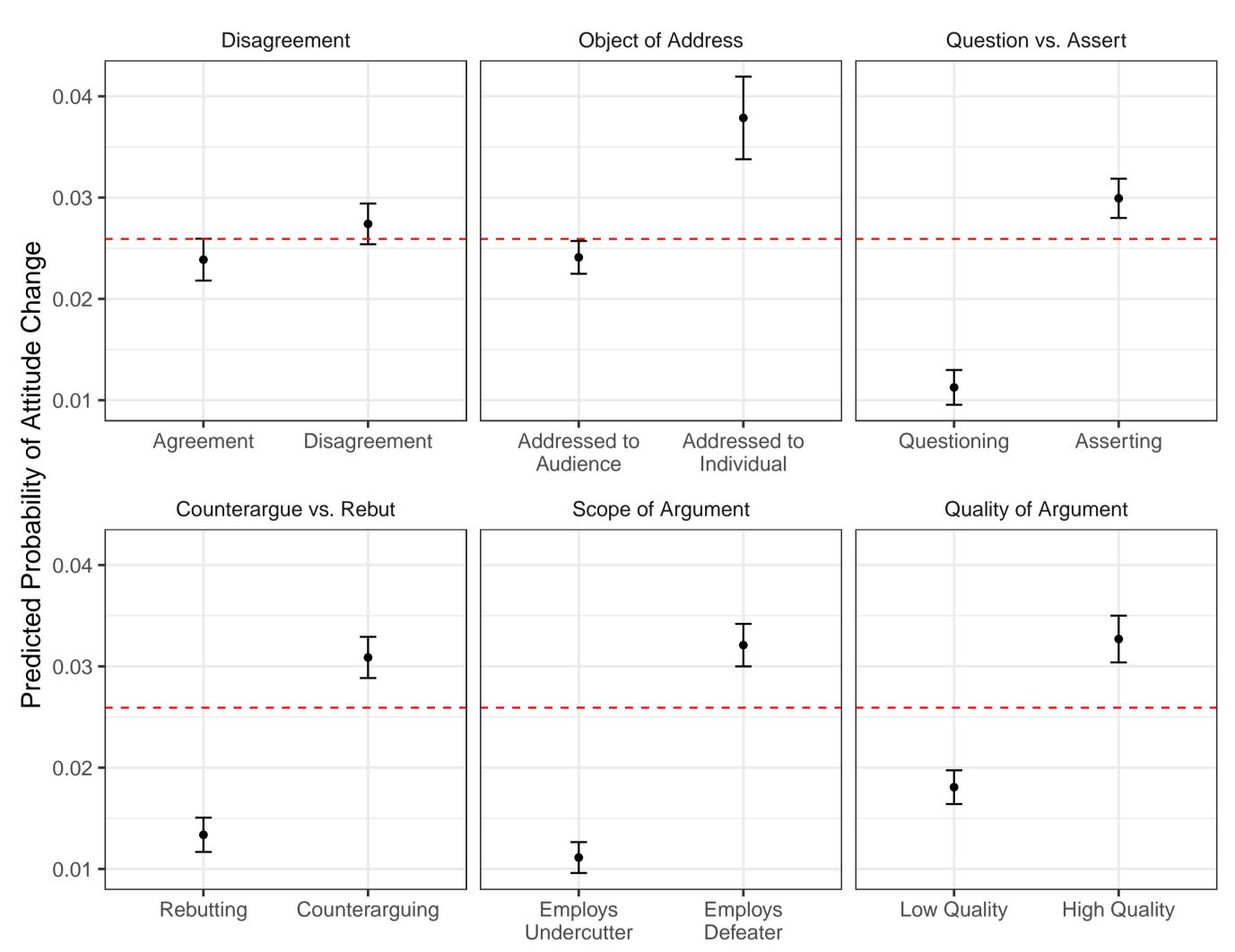
Table 4: Comparison to Previous State-of-the-Art Metrics.



Computational Efficiency



Application: r/ChangeMyView



(Firth 1993).

Highlights

- mon semantic and logical structure.
- drive performance across tasks.
- 38.38%.
- formance.

Figure 3: Computational Efficiency of Deep Learning Models. All models run on one NVIDIA A100 GPU for one epoch. Multi-task model sizes given in Table 3.

Figure 4: Effect of Select Argumentation Characteristics on Opinion Change in r/ChangeMyView. Red horizontal lines denote baseline probability of a comment resulting in opinion change. Error bars give 95% confidence intervals. All models are binomial logits fit with penalized maximum-likelihood

• Argument mining tasks—and likely other natural language tasks in the social sciences—share **com**-• Double-branched multi-task networks with double-weighted loss exploit shared features to • A multi-task approach provides **improvement on previous state-of-the-art metrics** of 1.25% to • Multi-task networks enable significant gains in computational efficiency without sacrificing per-• Network outputs correlate with opinion change in theoretically expected ways.